Exercise 16

(a) What quantities are given in the problem?
(b) What is the unknown?
(c) Draw a picture of the situation for any time t.
(d) Write an equation that relates the quantities.
(e) Finish solving the problem.

At noon, ship A is 150 km west of ship B. Ship A is sailing east at $35 \mathrm{~km} / \mathrm{h}$ and ship B is sailing north at $25 \mathrm{~km} / \mathrm{h}$. How fast is the distance between the ships changing at 4:00 PM?

Solution

The ships' speeds, $d x / d t=35 \mathrm{~km} / \mathrm{h}$ and $25 \mathrm{~km} / \mathrm{h}$, are known. $d r / d t$, the rate that the distance from ship A to ship B, after four hours is the unknown.
12:00 PM 4:00 PM

The Pythagorean theorem gives the relationship between the sides of the triangle.

$$
\begin{aligned}
& r^{2}=x^{2}+y^{2} \\
& r=\sqrt{x^{2}+y^{2}}
\end{aligned}
$$

Differentiate both sides with respect to t.

$$
\begin{aligned}
\frac{d r}{d t} & =\frac{1}{2}\left(x^{2}+y^{2}\right)^{-1 / 2} \cdot \frac{d}{d t}\left(x^{2}+y^{2}\right) \\
& =\frac{1}{2}\left(x^{2}+y^{2}\right)^{-1 / 2} \cdot\left(2 x \cdot \frac{d x}{d t}+2 y \cdot \frac{d y}{d t}\right) \\
& =\frac{1}{\sqrt{x^{2}+y^{2}}}\left(x \frac{d x}{d t}+y \frac{d y}{d t}\right)
\end{aligned}
$$

Note that the sides of the triangle at 4:00 PM are $x=150-35(4)=10$ and $y=0+25(4)=100$. Therefore, the rate that the distance between the ships increases at 4:00 PM is

$$
\left.\frac{d r}{d t}\right|_{\substack{x=10 \\ y=100}}=\frac{1}{\sqrt{10^{2}+100^{2}}}\left[10\left(35 \frac{\mathrm{~km}}{\mathrm{~h}}\right)+100\left(25 \frac{\mathrm{~km}}{\mathrm{~h}}\right)\right]=\frac{285}{\sqrt{101}} \frac{\mathrm{~km}}{\mathrm{~h}}
$$

